Properties of Lyapunov Exponents for Quasiperodic Cocycles with Singularities

نویسنده

  • KAI TAO
چکیده

We consider the quasi-periodic cocycles (ω, A(x, E)) : (x, v) 7→ (x+ω, A(x, E)v) with ω Diophantine. Let M2(C) be a normed space endowed with the matrix norm, whose elements are the 2 × 2 matrices. Assume that A : T × E → M2(C) is jointly continuous, depends analytically on x ∈ T and is Hölder continuous in E ∈ E , where E is a compact metric space and T is the torus. We prove that if two Lyapunov exponents are distinct at one point E0 ∈ E , then these two Lyapunov exponents are Hölder continuous at any E in a ball central at E0. Moreover, we will give the expressions of the radius of this ball and the Hölder exponents of the two Lyapunov exponents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

Introduction 1 1. Lyapunov exponents of dynamical systems 3 2. Examples of systems with nonzero exponents 6 3. Lyapunov exponents associated with sequences of matrices 18 4. Cocycles and Lyapunov exponents 24 5. Regularity and Multiplicative Ergodic Theorem 31 6. Cocycles over smooth dynamical systems 46 7. Methods for estimating exponents 54 8. Local manifold theory 62 9. Global manifold theor...

متن کامل

- Generic Cocycles Have One - Point Lyapunov Spectrum

We show the sum of the first k Lyapunov exponents of linear cocycles is an upper semicontinuous function in the L topologies, for any 1 ≤ p ≤ ∞ and k. This fact, together with a result from Arnold and Cong, implies that the Lyapunov exponents of the L-generic cocycle, p < ∞, are all equal.

متن کامل

On Lyapunov Exponents of Continuous Schrödinger Cocycles over Irrational Rotations

In this note, we consider continuous, SL(2,R)-valued, Schrödinger cocycles over irrational rotations. We prove two generic results on the Lyapunov exponents which improve the corresponding ones contained in [3].

متن کامل

On SL(2, R) valued smooth proximal cocycles and cocycles with positive Lyapunov exponents over irrational rotation flows

Consider the class of C-smooth SL(2,R) valued cocycles, based on the rotation flow on the two torus with irrational rotation number α. We show that in this class, (i) cocycles with positive Lyapunov exponents are dense and (ii) cocycles that are either uniformly hyperbolic or proximal are generic, if α satisfies the following Liouville type condition: ∣ α− pn qn ∣ ∣ ≤ Cexp(−q n ), where C > 0 a...

متن کامل

On the stability of Oseledets spaces under random perturbationsis

In this paper we investigate stability properties of matrix cocycles (products of random matrices). It is shown that for a very general type of perturbations stability of Oseledets spaces is equivalent to stability of Lyapunov exponents.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015